
On predicting the optical diffraction pattern 
from thermotropic specimens having a 
banded texture 

C. Viney and A. H. Windle 
Department of Metallurgy and Materials Science, Cambridge University, Pembroke Street, 
Cambridge CB2 3QZ, UK 
(Received 13 January 1986) 

Specimens of a sheared and annealed thermotropic copolyester were examined in the polarizing microscope. 
The optical diffraction pattern associated with the periodic microstructure (banded texture) was observed in 
the objective back focal plane. The significant features of the diffraction pattern can be predicted analytically 
in terms of the in-plane periodic variation of optical orientation in the specimen. We explain how the relative 
intensities of the different diffracted orders depend on the orientation of the crossed polars relative to the 
specimen shear direction. For specimens in which the optical orientation varies sinusoidally with position 
along the unique axis, we derive the diffraction pattern exactly, and we explain why second and higher orders 
are not normally observed. 

(Keywords: banded texture; o p t i c a l  diffraction pattern; Fourier transform; crossed polars; liquid crystalline p o l y m e r s )  

I N T R O D U C T I O N  

It is a widely documented fact that both lyotropic and 
thermotropic liquid crystalline polymers can show a 
microscopic banded texture after shearing, especially if 
viewed between crossed polars 1-8. Progress has been 
made in relating the observed microstructure to the 
appearance of the optical diffraction pattern as seen in the 
objective back focal plane when using a Bertrand lens 2'4. 
In particular, explanations have been sought to account 
for the absence of a zero order in the diffraction pattern 
when the shear axis is parallel to the transmission 
direction of either polar. These analyses have however 
been almost entirely qualitative, and they have not 
addressed the possibility of second or higher orders. 
Indeed, these have not been observed, either because the 
microstructure is so fine that orders higher than first 
cannot be accommodated by the objective aperture (e.g. 
in the case of 'Kevlar '  [Du Pont trademark]), or because 
the particular form of the one-dimensional periodicity of 
intensity in the microstructure is such that higher orders 
are too weak (e.g. in the case of many as-sheared 
thermotropic copolyesters). 

In the present study, we identify banded textures which 
give second and third orders (as well as zero and first) in 
the optical diffraction pattern. A generalised method is 
developed to predict the intensities of all the diffracted 
orders, as a function of crossed polar rotation, for a 
specimen having one-dimensional periodicity in its 
optical texture. 

Material was sheared at 250°C, between glass microscope 
slides. It was held at this temperature for 5 h before being 
quenched to room temperature on a copper block. The 
specimens were examined and photographed (Figure 1) 
between crossed polars in a Carl Zeiss (Jena) microscope. 
The corresponding optical diffraction patterns (Figure 2) 
were imaged in the same instrument with the help of a 
Bertrand lens. All observations were made in white light, 
and the specimens were thin enough that all contrast was 
between black and low-order whites. 

The optical diffraction patterns show four clear orders 
(0 to 3), though not all are visible at all rotations of the 
crossed polars (Figure 2). When the transmission 
direction of either polar is parallel to the shear direction, 
only the first and third orders are visible. Their intensity 
decreases, and that of the zero and second increases, as the 
crossed polars are rotated away from this orientation. 
When the specimen is in the 45 ° orientation between the 
crossed polars, only the latter two orders can be seen. 

This behaviour of the bands as the crossed polars are 
rotated is similar to that documented 4'7 for specimens of 
the same polymer quenched directly after shear; this 
indicates that the orientation of the in-plane components 
of the principal axes of the optical indicatrix changes 
periodically as a function of position measured along the 
shear direction. However, whereas this variation was 
near-sinusoidal in the sheared and quenched specimens, 
Figure l is more suggestive of a symmetrical sawtooth 
function for the sheared, annealed and quenched material. 

EXPERIMENTAL 

Specimens were prepared from the following random 
copolyester: 

HOOC - ~ O H  )0.6 ( 

* (HO-(CH2)2-OH * HOOC-~Q~'N~ -COOH )0.4 

ANALYSIS AND DISCUSSION 

Consider a region of specimen in which the optical 
director is at an angle 4~ relative to the polarizer 
transmission direction. Let the specimen be observed 
between crossed polars. The locally transmitted 
amplitude is described by the following standard 
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Figure 1 Specimen of sheared and annealed thermotropic copolyester, photographed at room temperature between crossed polars. The six 
micrographs show the same field of view. Initially, the transmission direction of the polarizer was parallel to the specimen shear direction (left to right); 
the angle through which the crossed polars were rotated (anticlockwise) from this orientation is marked on each frame 

equation 4,9: 

A =[~°s in2 t~ l [ ex  p i09t--exp i ( t o t - - 6 ) ]  

where Ao =incident amplitude and 6=phase  lag which 
the specimen introduces between the components of light 
travelling along the two vibration directions. 

Let the specimen have a variation in optical orientation 
relative to a reference axis X (the shear direction), and let 
this variation be periodic with position measured along 
X. The specimen is defined as being in the 'orthogonal 
position' when X is parallel to the transmission direction 
of the polarizer. A 'divergence function'f(x) then describes 
how ~ varies with position x measured along X; it need 
not necessarily have the sinusoidal form deduced for 
sheared thermotropic liquid crystal polymer specimens in 
previous studies 4'7. 

The transmitted amplitude, as a function of x when the 
specimen is viewed in the orthogonal position between 
crossed polars, is now: 

A (x) = ~--9-° {sin 2f(x)} {exp i t o t  - exp i [ o g t  - ~(x)] } 

In writing ~ as a function of x, we recognize that the 
birefringence of the sample may also vary periodically 
with x (ref. 7), and that there may be variations in 
thickness too. 

If the crossed polars are rotated by 0 relative to the 
orthogonal position, then ~b = f ( x ) +  0, where f and 0 are 
measured in the same sense relative to X. The transmitted 
amplitude, in the most general case, is then: 

A0 
A (x) = ~-{sin 2If(x) + 0] } {exp i t o t  - exp i [ t o t  - -  ¢$(x)] } 

(1) 
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r ' !  

F i p r e  2 Optical diffraction patterns corresponding to the six micrographs in Figure 1. They were imaged by using a Bertrand lens to access the back 
focal plane of the microscope objective. White numerals are used to indicate the orders to which particular diffraction maxima belong 

The amplitude distribution in the back focal plane of the 
objective (for an infinite object) is now found by 
calculating the Fourier transform of equation (1): 

Afk)= f ~-{sin 2[f(x)+O]} 
- - o o  

x {exp itot-exp ~l~tot--t$(x)]}{exp ikx}dx (2) 

where k is a measure of position in the back focal plane of 
the objective, measured along a direction K in reciprocal 
space. K is parallel to X. If A'(k) denotes the complex 
conjugate of A(k), the quantity A(k).A'(k) gives the 
corresponding intensity variation as a function of 
position in the back focal plane--in other words, it 
describes the optical diffraction pattern of the specimen. 
(It has become practice to refer to this synonymously as 
the 'conoseopic image', though the latter term should 
strictly be reserved for the case where the optical 

diffraction pattern of a (single crystal) specimen is being 
viewed in convergent light). The optical diffraction pattern 
of the specimen, as recorded on photographic film or the 
retina of the eye, contains no information about the 
relative phases of the constituent orders. If one were to 
Fourier transform this recorded pattern, one would 
consequently obtain the autoconvolution of the original 
object function. The Fourier transform of the recorded 
diffraction pattern would therefore necessarily always be 
centrosymmetric, regardless of whether or not there is a 
centre of symmetry in the object. 

In equation (2), the quantity 6(x) can be written as: 

2rid(x)_ 
,~(x)= . L ~ a . ( x ) - # m i . ( x ) ]  

A 

where d(x)=specimen thickness at position x; 
/a = refractive index, measured along a vibration direction 
at position x; 2=wavelength of light incident on 
specimen. 
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It therefore follows that the amplitude (and intensity) 
distribution in the objective back focal plane may not 
simply depend on the in-plane component of the 
divergence function. It may also be affected by any out-of- 
plane component, by any spatial variation in the local 
molecular correlations, and by any variation in thickness. 
For the purpose of this initial analysis, equation (2) can be 
simplified by ignoring any point-to-point changes in 
relative phase which the specimen may introduce into the 
light that it transmits. In practice, this requires a specimen 
of constant thickness, sufficiently thin to exhibit only 
low-order interference colours. Provided that any 
birefringence variations have the same spatial periodicity 
as the divergence function, their effect would be to modify 
the relative intensities of the diffracted orders, rather than 
their positions in the objective back focal plane; this is a 
result fundamental to the operation of blazed optical 
diffraction gratings 1°. 

Hence, treating the specimen as an amplitude object 
only, we can write equation (2) in the following simplified 
form: 

A(k)=C f {sin 2[flx)+O]}{exp ikx}dx 

Substituting x + 2 n = z  (i.e. x = z - 2 n  and dx=dz) gives: 

f [ s i n  2f(x)] [exp ikx]dx 

o C  

- ~ [sin 2f(z)][exp ik(z-  2n)]dz 

- - c t 3  

= [exp(-  2nik)] ( [sin 2f(z)][exp ikz]dz 

- - a f ~  
~3 

f l  

- [exp( -Znik) ]  i [sin 2f(x)][exp ikx]dx 
~ d  

- ~ ( 5 )  

(Since we are dealing with a definite integral, the value 
does not depend on the variable used.) 

Equation (5) can only be true if: 

f [sin 2f(x)][exp ikx]dx 

- - o D  

is zero (or, in other words, if the Fourier transform of 
sin2f(x) is zero), or if: 

where C is a constant 

= C cos20 f [sin 2f(x)][exp ikx]dx 

exp(-  2nik) = 1 

(in which case the Fourier transform of sin2f(x) can be 
non -zero). 

It follows that non-zero solutions require: 

- 2nik = 2him 

+ C sin20 f [cos 2f(x)][exp ikx]dx 

- - o 9  

where m is an integer. So 

Both the integrals in equation (4) are the Fourier 
transforms of periodic functions. Furthermore, the 
divergence function f(x) is itself periodic. For the sake of 
mathematical convenience, we choose x to be scaled so 
that the period off(x) is 2n. 

Now f(x) is antisymmetric about x = 0 and symmetric 
about x=n/2. So 2f(x) and also sin2f(x) are 
antisymmetric about x = 0 and symmetric about x = n/2, 
and have a period of 2n. 

In general, for any infinite periodic function g(x), 

~[g(x) ]  = ~ [g (x )  + T], 

where Tis the period of g(x). So 

(4) k=m (6) 

We also know that sin2f(x) is antisymmetric about 
x = 0 and that it is symmetric about x = n/2 = T/4. So all 
cosine components and all even sine components of its 
Fourier transform are zero 11. Only odd orders will 
therefore be present in its Fourier transform, and 
equation (6) is reduced further to: 

k=m, where m is an odd integer. (7) 

The values of k for which the second term of equation 
(4) is non-zero can now be found, by a similar argument to 
that used above for the first term. We have seen that 2f(x) 
is antisymmetric about x = 0  and symmetric about 
x=n/2, with a period of 2n. Therefore, cos2f(x) is 
symmetric about x = 0. It has a period ofn [rather than 2n 
as was the case for sin2f(x)], and it is neither symmetric 
nor antisymmetric about x = n/4 = T/4. 

By analogy with the derivation of equation (6), non- 
zero solutions require: 

f [sin 2f(x)][exp ikx]dx= f [sin 2f(x+2n)][exp ikx]dx 

- 0 o  - - o 0  

- nik = 2him 

where m is an integer. So 

k=2m ( 8 )  
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Since cos2f(x) is symmetric about x=0 ,  all sine 
components of its Fourier transform are zero 11. However, 
it is neither symmetric nor antisymmetric about 
x = rc/4 = T/4, so that there are no further restrictions on 
equation (8). 

The first term of equation (4)is non-zero if equation (7) 
is satisfied: 

i.e. k . . . . .  - 5 ,  - 3 ,  - 1 ,  +1, +3, +5  .. . .  

These solutions represent the odd-order maxima in the 
optical diffraction pattern. The second term of equation 
(4) is non-zero if equation (8) is satisfied: 

i.e. k . . . . .  - 6 ,  - 4 ,  - 2 ,  0, +2, +4, +6  ....  

These solutions represent the even-order maxima in the 
optical diffraction pattern• 

The [cos20] factor in the first term of equation (4) 
shows how the intensity of the odd orders depends on the 
orientation of the crossed polars relative to the 
orthogonal position• The intensity of these orders 
(proportional to cos220) must be a maximum when 
O= ±nrt/2, and zero when O=rt/4++_nn/2 (where n is an 
integer). Similarly, the [sin20] factor in the second term of 
equation (4)explains the behaviour of the even orders: 
their intensity (proportional to sin220) is zero when 
O= +_nrc/2, and it is a maximum when O=lt/4+_nrc/2. 

The intensities of the odd and even diffracted orders 
visible in Fiyure 2 can be seen to follow this predicted 
behaviour qualitatively as the crossed polars are rotated. 
It is however not possible to quantify the absolute 
magnitudes of the intensities easily, since there is some 
overlap of intensity from the different orders. (The 
maxima are broadened because the object is of finite 
extent and not perfectly periodic.) Also, there is an 
indeterminate level of background scattering. 

THE SPECIAL CASE OF A SINUSOIDAL 
DIVERGENCE F U N C T I O N  

We turn now to the well-documented sinusoidal 
divergence function deduced for sheared thermotropic 
liquid crystal polymer specimens in previous studies 4,v. 
The optical diffraction pattern of such specimens only 
ever showed detectable zero and first order maxima. In 
this case the divergence function can be written in the 
form: f(x)-~ bsinx, where b is a constant. 

The maximum possible amplitudes of the odd 
diffracted orders (i.e. their amplitudes when 0 = mt/2) are 
given by the Fourier coefficients of [sin 2f(x)], as implied 
by the first term of equation (4) and the results deduced in 
the previous section. To obtain the Fourier coefficients, 
we write: 

From the derivation of equation (5), T is known to be 
equal to 2ft. The maximum possible amplitude of each 
diffracted order is therefore given by" 

l f [sin(2b sin x)][exp-- irx]dx c,=2~ 

1 f [sin(2b sin x)][cos(rx)- i sin(rx)]dx 
2~ 

- g  

1 f [sin(2b sin x)][cos(rx)]dx =~ 

i f [sin(2b sin x)][sin(rx)]dx 
2re 

(9) 

The first term of equation (9) contains the integral of an 
antisymmetric function (the product of a symmetric 
function and an antisymmetric function), evaluated in an 
interval having zero as its midpoint. It is therefore equal 
to 0. The second term of equation (9) contains the integral 
of a symmetric function, also evaluated in an interval 
having zero as its midpoint. One may therefore write: 

- i  f [sin(2b sin x)][sin(rx)]dx 

r~ 

r t  /f 
- [sin(2b sin x)][sin(rx)]dx 

0 

= - t-[1 - ( -  1)' ] 2 [ J , (2b ) ]  (1 O) 
7Z 

(from Tables in ref. 12; J ,  is a Bessel function of order r). 

= - iJ,(2b) 

where r is an odd integer. 
C, is seen to be zero for n even, consistent with the fact 

that we are dealing with the odd diffracted orders. 
Similarly, the maximum possible amplitudes of the even 
diffracted orders (i.e. their amplitudes when 
O=n/4+_nn/2) are given by the Fourier coefficients of 
[cos2f(x)]. We therefore write: 

sin 2f(x)= ~" C,exp(2rcirx/T) 

where T is the period of [sin2f(xt]. The Fourier 
coefficients C, are given by: 

1"/2 

1"/2 

[sin 2f(x)][exp( - 2rtirx/T)]dx 

cos 2f(x)= ~ C,exp(Dtisx/T) 
s =  - -  of) 

The Fourier coefficients Cs are given by: 

T/2 

1 
Cs =7" f [cos 2f(x)][exp(-  2~isx/T)]dx 

- 7/2 
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From the derivation of equation (8), T is known to be 
equal to n. Hence: 

~/2 ,j C2s = -  [cos(2b sin x)] [exp ( - 2isx)]dx 
-n/2 

n/2 

1 f [cos(2b sin x)][cos(2sx)-isin(2sx)]dx 
7Z 

- n/2 

n/2 

1 f [cos(2bsin x)][cos(2sx)]dx 
- n/2 

n/2 

i f [cos(2b sin x)] [sin(2sx)]dx (I 1) 
7[ 

-n /2  

The second term of equation (11) is zero. This leaves: 
n/2 

1 
C2s=~ f [cos(2b sin x)][cos(2sx)]dx 

-n /2  

n/2 

=2 f [cos(2b sin x,][cos(2sx)]dx 
o 

=22[J2,(2b) ] (from Tables). 

We can therefore write: 

C,=J,(2b) (12) 

where r is an even integer. This result is consistent with the 
fact that we have been considering the even diffracted 
orders. 

Equations (10) and (12) show that the amplitudes of the 
different diffracted orders depend on b, the maximum 
value of the divergence function. Figure 3a shows values 
of IC,[ 2 (maximum intensity) plotted as a function of 2b 
(0<2b<n) ,  corresponding to maximum divergence 
angles in the range O<b<n/2). Measurement 4 of b 
generally yields values in the range 0.35 < b < 0.65, so that 
the area between the vertical broken lines in Figure 3a is 
of particular interest. Figure 3b shows the expected 
intensities when 0 = 0 (i.e. when the specimen is in the 
orthogonal position and the even orders are therefore 
absent). Figure 3c shows the situation for 0 = n/4. 

The intensity curves show clearly that one can expect to 
observe zero and first order optical diffraction maxima 
from these specimens, and that higher orders, though 
present, may be too weak. However, were the maximum 
divergence angle to be as large as 1 radian, one would find 
that the first and second orders are strongest, with the 
zero order now being too weak to observe. On the other 
hand, for a maximum divergence angle as low as 0.1 radian, 
it is doubtful whether anything other than the zero order 
would be seen. 

The observation of only zero and first orders in the 
optical diffraction patterns of these specimens is therefore 
not just a simple consequence of taking the Fourier 
transform of a sine function--such an explanation 4 can 

r 
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0 • • • ~ 
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I 2 3 
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ICrl z 0=45 ° 

0 I 2 3 

0 50 60 90 

Figure 3 (a) Values of I c l  2 (maximum intensity of diffracted order r) plotted as a function of 2b (and the related maximum divergence angle). Curves 
were plotted according to equations (10) and (12), using published tables, ref. 13. The values lying between the vertical broken lines relate to typical 
observed specimens. (b) Curves from (a) which are relevant to specimens viewed in the orthogonal position between crossed polars. (c) Curves from (a) 
which are relevant to specimens rotated through 45 ° from the orthogonal position 
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only be approximate. The intensity distribution in the 
objective back focal plane also depends on the 
transmission characteristics introduced by the presence of 
the crossed polars, so that one in fact has to consider the 
Fourier transform of a 'sine of sine' function. 

COMPARISON WITH SPECIMENS HAVING A 
NON-SINUSOIDAL DIVERGENCE F U N C T I O N  

Figures 1 and 2 were obtained from a specimen with a 
symmetrical sawtooth-like divergence function; the 
contrast changes as a function of crossed polar rotation 
suggest an alternating divergence angle of approximately 
+ 40 ° and - 4 0  ° relative to the shear direction. 

Were the divergence function sinusoidal, with a 
maximum divergence angle of +40  °, Figure 3 suggests 
that the intensity of the zero order at 0 = ~/4 would be 
similar to that of the first order at 0 = 0. The maximum 
intensity of the second order should be a factor of six or so 
lower, and the third order should be almost 
imperceptible. 

Figure 4 consists of contour plots prepared from the 
optical diffraction patterns in Figure 2. The plots were 
drawn with the help of an image processing system 14 
which reads in data directly from photographic negatives 
via a microdensitometer. The contour levels were chosen 
(after appropriate calibration of the film sensitivity) so 
that the interval between any adjacent pair corresponds 
to a twofold increase in intensity. Overlap of intensity 
from the different orders makes it impracticable to 
calculate an integrated intensity for each of the orders, but 
some estimated comparison on the basis of their relative 
peak intensities is possible. It is apparent that the 
maximum intensities of the zero and first orders are 
indeed similar, and that the maximum intensity of the 
second order is perhaps an order of magnitude lower. 
However, the third order is almost as evident as the 
second. 

The observed optical diffraction pattern appears to be a 
sensitive guide to the profile of the divergence function, 
and can be used to complement results deduced from 
observation of the banded texture between crossed polars. 

CONCLUSIONS 

(1) The optical diffraction pattern of sheared 
specimens having a one-dimensional divergence function 
consists of discrete maxima when the specimens are 
viewed between crossed polars. 

(2) The odd order maxima are most intense when the 
polarizer (or crossed analyser) transmission direction is 
parallel to the shear direction. The even orders are 
brightest when the crossed polars are rotated by rt/4 from 
this orientation. 

(3) In the special case of specimens having a sinusoidal 
divergence function, the maximum intensities I ..... of the 
various diffracted orders can be calculated exactly, 
subject to reasonable assumptions being made. For the r th 
order maximum, I ..... is proportional to [d,(2b)] 2, where 
b is the maximum value of the divergence function. 

(4) The observation that specimens with a sinusoidal 
divergence function show only zero and first order 
diffracted maxima is a consequence of their particular 
values of b. 

e= o* 

e = 2 0 *  

e = 3 0  ° 

8 =40 ° 

e= 45 ° t t t t ~ t t 
3 2 I 0 I 2 3 

Figure 4 Intensity contour plots prepared from the six optical 
diffraction patterns shown in Figure 2. The interval between successive 
contours corresponds to a twofold increase in intensity 

(5) The relative intensities of maxima in the observed 
optical diffraction pattern are sensitive to the profile of the 
divergence function. 
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